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Abstract: Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow
distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle
contrast imaging to provide deep tissue blood flow information. However, the current speckle
contrast tomography techniques suffer from poor spatial resolution and involve both computation
and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a
camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the
skin. Our approach replaces the traditional forward model using diffuse approximations with
Monte-Carlo simulations-based convolutional forward model, which enables us to develop an
improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach
can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the
reflection geometry. We also conduct human experiments to demonstrate that our approach can
detect reduced flow in major blood vessels during vascular occlusion.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Continuous blood flow is essential to the normal functioning of tissue and organs. Arteries
and veins carry oxygenated and deoxygenated blood and lie deep within the human tissue (>1
mm from the skin surface). The nutrients and oxygen in the tissue are generally exchanged
through smaller vessels that constitute the micro-vascular bed and are located closer to the skin’s
surface. Insufficient blood supply due to blockage of blood vessels might result in potential
clinical complications. Microvascular blood flow or perfusion is an indicator of one’s circulatory
health, revealing any narrowing or blockage of blood vessels. Directly measuring vascular flow
is challenging since the vessels are located deep within the tissue. Computed angiography and
magnetic resonance angiography are non-invasive techniques for imaging blood vessels and have
been used to diagnose vascular diseases, for example, peripheral arterial disease [1–3]. However,
both these techniques are expensive and may require injecting contrast agents in the blood stream
[1,4]. Optical techniques are therefore being explored as low-cost alternatives for obtaining deep
tissue blood flow.

Laser Doppler Flowmetry (LDF) is a commonly used technique for obtaining a point estimate
of microvascular blood flow [5,6] and has been extended to imaging applications (Laser Doppler
Imaging) [7]. LDF uses a coherent source of light of a particular frequency to illuminate a
region of the human tissue. When the incident light interacts with the moving scattering particles,
mainly the red blood cells, it undergoes a slight change in frequency, also known as the Doppler
shift. On the other hand, the light interacting with the static components, such as the tissue cells,
is unaffected and retains the same frequency as the source. As a result, the Doppler-shifted light
and the unaffected light interfere to produce random fluctuations at the detector. The power
spectral density of the intensity fluctuation at the detector directly depends on the speed of the
red blood cells. LDF is mostly used to recover microvascular blood flow [6]. Diffuse Correlation
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Spectroscopy (DCS) uses point light sources and detectors separated by a distance to obtain
blood flow information from deeper inside the tissue [8,9]. The main limitation of DCS is that it
operates in a low signal-to-noise ratio regime [10], and needs detectors with high sampling speed
(in order of MHz) to capture the intensity fluctuations, thereby limiting the number of detectors
for obtaining spatial information.

Camera-based methods for imaging blood flow are being widely explored due to the advantage
of providing spatial information in high resolution. The amplitude of subtle blood volume
pulsations captured by camera pixels on the skin surface illuminated by an incoherent light is
used as a surrogate measure of blood flow [11–13]. Laser speckle imaging (LSI) uses a coherent
light source broadly illuminating the tissue surface and a CCD or CMOS camera to obtain
superficial blood flow information with high spatial resolution. Speckle contrast tomography
(SCOT) extends LSI to obtain blood flow information in three dimensions by using scanning
point sources instead of broad illumination. Each camera pixel acts as a detector at various
distances from the point sources, thereby capturing light that has probed different depths within
the tissue. Laser speckle contrast tomography has been used to assess deep blood flow in the
brain [14] and burn wound monitoring [15]. However, the current state-of-the-art techniques for
recovering 3D blood flow have two limitations- i) memory and computation intensive algorithms
which limits the spatial resolution of the reconstructed blood flow in 3D volume, and ii) poor
depth reconstruction due to several approximations in the forward model.

In this work, we tackle the limitations of previous approaches by using a line-scanning system
that allows us to i) develop an efficient forward and inverse model, resulting in a higher spatial
resolution, and ii) use Monte-Carlo-based simulations for the forward model which results in
better reconstruction of flow features at different depths in the 3D volume. Overall, our main
contributions are as follows:

1. We use a line-scanning system consisting of a laser as an illumination source synchronized
with a camera to obtain a dense set of speckle contrast measurements for various source-
detector pair distances. We then develop a convolution-based inverse algorithm, shown
in Fig. 1, to efficiently reconstruct the blood flow inside the volume with high spatial
resolution; we can resolve 2 mm structures at a depth of 6 mm inside a tissue-like scattering
medium.

2. We derive an efficient technique, SpeckleCam, to compute a perturbation-based sensitivity
matrix using Monte Carlo simulations via the photon-replay method. We show that
SpeckleCam improves the 3D reconstruction quality of structures along various depths
inside the scattering medium using Monte Carlo-based sensitivity matrix over the traditional
diffusion-based model.

3. We validate our approach on tissue phantoms containing hollow complex tube structures
with controllable fluid velocity through the tubes. Our system is capable of resolving
structures with a flow speed greater than 5 mm/s. We also image the human arm and wrist
during varying blood perfusion stages induced by manual occlusion. We confirmed, as
expected, a reduction in blood flow in major blood vessels lying >1 mm below the skin
surface during different stages of blood occlusion.

The rest of the paper is organized as follows. First, we discuss the relevant background and prior
work in Section 2. Next, we derive a model to describe speckle contrast images using diffusion
approximation and perturbation-based Monte Carlo simulation in Section 3. We then introduce
our convolution-based forward model and reconstruction algorithm in Section 4. Section 5
describes our hardware setup and the experiments to validate our approach. We discuss the
reconstruction results using our approach in Section 6. Finally, we conclude with future scope
and limitations in Section 7.
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Fig. 1. Our proposed approach for high-resolution deep blood perfusion imaging. We
replace the point light source with a line source and develop a convolutional forward model
based on Monte Carlo simulations. The convolution-based forward model allows us to
develop an efficient inverse algorithm in place of the traditional matrix inversion-based
reconstruction process.

2. Background and key challenges

2.1. Speckle contrast imaging

Speckle contrast imaging system typically uses a red or infrared laser to illuminate a region on
the surface of a scattering medium, mainly the tissue. Light gets scattered and travels different
paths in the medium. Photons with resulting path length differences interfere constructively or
destructively to produce random bright or dark spots on the detector. A camera captures a 2D
image of this interference pattern, also known as the speckle image. In the case of dynamic
scattering particles, for example, moving red blood cells, the speckle image changes temporally,
and the fluctuation in the speckle image is directly related to the speed of the dynamic particles.
A camera with a fixed exposure time records a blurry speckle image. The amount of blurriness
depends on the speed of the scattering particles and is quantified by measuring contrast in a
speckle image. The speckle contrast K of an image I is calculated as K = σ(I)/⟨I⟩ where σ is the
local standard deviation, and ⟨⟩ is the local mean of the speckle image. The local speckle contrast
is measured spatially in a small N × N pixel neighborhood or in the temporal domain where
consecutive frames are considered to calculate speckle contrast at a single pixel location [16–18].
In areas of increased blood flow, the speckle pattern blurring is more prominent, resulting in
decreased contrast in the corresponding high blood flow areas.

Speckle contrast imaging uses a wide-field illumination; therefore, the detectors are most
sensitive to the superficially scattered photons [19]. Furthermore, in reflection geometry, the
signal contrast due to deep flow decreases with the thickness of the static scattering medium
[20,21]. Speckle contrast imaging, therefore, has been mostly limited to superficial blood flow
imaging. In an attempt to increase the imaging depth, the line-scan imaging technique is generally
adopted [22–24] to reject surface reflections and improve sensitivity to blood flow in deeper
tissue. However, as light penetrates deeper, it gets scattered numerous times inside the tissue.
The result is a loss in spatial resolution at the expense of improved sensitivity towards deeper
flow.

2.2. Speckle contrast tomography

Speckle contrast tomography extends speckle imaging toward recovering deep blood flow
information. The idea is similar to Diffuse Optical Tomography (DOT), where point sources are
used instead of wide-band illumination. The camera pixels at various distance from the light
source records the backscattered light that has probed different regions inside the tissue volume.
Under certain assumptions, a forward model relates the unknown blood flow at each voxel to
the set of measurements by a linear set of equations. The flow at each voxel in a region is then
reconstructed by fitting a forward model to the set of measurements [14,25,26]. The Correlation
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radiative transport equation (CTE) is generally used to derive the forward model for speckle
contrast tomography. However, the CTE does not have a closed-form solution and is typically
solved either by mesh-based Monte Carlo simulation or by making diffuse approximations.
Monte Carlo simulation offers very accurate solutions to CTE but is time-consuming. Given a
dense set of measurements where each camera pixel acts as a detector, modeling the correlation
function at thousands of detectors through traditional Monte Carlo simulations is practically
infeasible. A faster approach is to use a diffusion equation to provide a lower-order expansion of
the CTE and obtain a closed-form solution. However, the diffuse approximations often lead to
loss of information, especially in the transport regime [27]. The Monte Carlo simulation or the
analytical model is used to construct the sensitivity based on apriori known optical properties
of a homogeneous medium. The heterogeneity modeled by a change in blood flow per voxel in
a volume is generally reconstructed by inverting the sensitivity matrix. The number of voxels
for reconstruction determines the size of the sensitivity matrix. Reconstructing for many voxels
is not feasible due to the matrix-inversion step and therefore limits the spatial resolution of
the reconstructed volume [25]. In [28], the authors tackle the poor resolution issue by using a
high-resolution structural prior volume obtained via two-photon microscopy. A perturbation
Monte Carlo model is then used to recover blood flow in high resolution. However, obtaining
structural prior may not always be feasible.

3. Theory

In this section, we derive a forward model for laser speckle contrast images. We use this model
to develop our reconstruction algorithm for obtaining high-resolution blood flow maps. Laser
speckle contrast imaging mainly relies on the principle that when a coherent source of light is
used to illuminate a specific point on the surface of a scattering sample, the constant movement of
scattering particles causes fluctuations in the speckle images captured by a camera, as shown in
Fig. 2. The constant fluctuations induce blurriness in the time-integrated speckle measurements,
and the blurriness, quantified with speckle contrast, is directly related to the speed of the dynamic
particles. The speckle contrast K is related to the electric field autocorrelation function as follows
[29],

K2 =
2β
T

∫ T

0
g2

1(τ)
(︂
1 −
τ

T

)︂
dτ, (1)

where g1(τ) is the normalized electric field autocorrelation function, T is the exposure duration
of the camera, and β is a constant that depends on experimental conditions. Generally, in a
densely scattering medium, the field autocorrelation function is defined as

g1(τ) =

∫ ∞

0
P(s) exp[−k2

0⟨∆r2(τ)⟩s/l∗]ds, (2)

where s denotes the pathlength, P(s) denotes the normalized distribution of pathlength s of
photons in the scattering medium, l∗ denotes the random photon walk length that depends on the
scattering property of the medium, k0 is the wavenumber that depends on the wavelength of light
and ⟨∆r2(τ)⟩ models the RMS displacement of the moving scattering particles. For, Brownian
motion, ⟨∆r2(τ)⟩ = 6DBτ, where DB is the particle diffusion coefficient, or ⟨∆r2(τ)⟩ = V2τ2

in case of a directed capillary flow, where V is the average fluid velocity. A way of generating
the normalized autocorrelation function is first to generate the term P(s), which depends on the
scattering medium properties and is often difficult to obtain an analytical solution.

3.1. Analytical model based on diffusion approximation

A common approach to modeling the normalized autocorrelation function is to use the Correlation
Transport Equation (CTE). The CTE is similar to the Radiative Transport Equation (RTE), which
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Fig. 2. A speckle contrast tomography setup in reflection geometry. A laser hits the surface
of the scattering medium at location rs, and a camera captures the speckle image. The pixel
measurement at location rd with a fixed camera exposure time captures a blurry speckle
pattern due to light interaction with moving scattering particles. The local contrast in an
image characterizes the blurriness. For a fixed camera exposure time duration, the speckle
contrast decreases with the increasing flow speed and increasing concentration of dynamic
particles.

models the photon flux in a scattering medium, the only difference being that the CTE models
the autocorrelation function decay instead. Under diffusion and P1 approximation, the CTE is
simplified to obtain an expression for the electric field autocorrelation function G1(r, τ) [30],(︃

−D(r)∇2 + µa(r) +
1
3
µ′s(r)k2

0⟨∆r2(τ)⟩

)︃
G1(r, τ) = S(r), (3)

where S is the light source, µa(r), µ′s(r) are the absorption and reduced scattering coefficients
respectively, and D(r) = 1/(3(µ′s(r)+ µa(r))) is known as the diffusion coefficient of the scattering
medium. The human tissue, modeled as a homogeneous scattering medium, consists of static cell
particles and a capillary network that carries blood. The red blood cells flowing in the capillaries
contribute to the decay in the field autocorrelation function, and the RMS displacement of the
blood cells is given by ⟨∆r2(τ)⟩ and directly models the blood flow in human tissue. The tissue
is commonly modeled as a homogeneous scattering medium with uniform optical properties
(µa and µ′s are independent of position r), and the light source is placed at a location rs at the
boundary of the medium. Under the conditions of semi-infinite geometry with extrapolated
boundary conditions, the solution of the CTE is given by Green’s function as [31],

G1(rd, rs, τ) =
S

4πD

[︃
e−α(τ)r1

r1
−

e−α(τ)r2

r2

]︃
, (4)

where G1(rd, rs) is the normalized electric field fluctuation for a detector kept at a location rd.
The term α(τ) =

√︂
µa +

1
3 µ

′
sk2

0⟨∆r2(τ)⟩ governs how fast the field correlation function decays
with τ. The term r1 = |rs − rd + z0 | and r2 = |rs − rd − z0 − 2zb | denotes the distance from
the detector at rd to an isotropic source at rs + z0 and it’s negative image source located at
rs − z0 − 2zb, where z0 = 3D, zb = (1 + Reff )D/(1 − Reff ). The term Reff models for the refractive
index mismatch between the air and the scattering medium. The normalized correlation function
is given by g1(rd, rs, τ) = G1(rd, rs, τ)/G1(rd, rs, 0). The speckle contrast K0(rd) at the pixel
location rd is then given by Eq. (1).
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In tomographic reconstruction problems, we are interested in locating spatial changes in blood
flow inside the tissue. Tumors or blood vessels result in locally increased blood flow from
the surrounding region. Assuming that the scattering and the absorption parameters remain
constant, the perturbed particle displacement ⟨∆r2(τ)⟩ = ⟨∆r2(τ)0⟩ + ⟨∆r2(τ)δ⟩ reduces the
speckle contrast due to the ⟨∆r2(τ)δ⟩ = 6δDBτ+ δV2τ2 term, which models the increase in blood
flow. The reduced speckle contrast at the location rd for a given light source at rs is now given as,

K2(rd, rs) = K2
0 (rd, rs) + ∆K2(rd, rs). (5)

If we ignore the contribution from Brownian motion, we can write ⟨∆r2(τ)δ⟩ = δV2τ2. The
change in speckle contrast is derived from the modified normalized autocorrelation function in
[25] and is then given by,

∆K2(rd, rs) = −
4µ′sk2

0β

3T

∫
W(rd, rs, rj)δV2(rj)drj, (6)

where,

W(rd, rs, rj) =

∫ T

0

G1(rs, rd, τ)
G1(rs, rd, 0)

G1(rs, rj)G0(rj, rd, 0)
G(rs, rd, 0)

τ2
(︂
1 −
τ

T

)︂
dτ, (7)

where G0 is Green’s function and is related to Eq. (4) by G0 = DG1/S. The term W relates the
change in blood flow inside the scattering medium to the change in speckle contrast recorded by
the camera. The continuous scattering medium can be discretized into a set of voxels, and the
medium properties are then defined for each voxel. The integral in Eq. (5) can then be replaced
with a matrix multiplication operation, given as,

∆K2(rd, rs) = −
4µ′sk2

0β

3T

∑︂
rj

W(rd, rs, rj)δV2(rj), (8)

where W(rd, rs, rj) is called the sensitivity matrix and depends on the properties of the homoge-
neous scattering medium.

3.2. Perturbation model based on Monte Carlo simulations

The forward model derived in the previous section is based on lower-order approximations, which
may not be very accurate. Monte Carlo simulation models light propagation within the tissue
and are generally more accurate than analytical solutions. Therefore, we resort to Monte Carlo
simulations to derive a direct solution to Eq. (1). With the same setup as in Fig. 1, we use MCX
[32] to track photon scattering inside the medium. Specifically, the detector records the detected
photon information, like the total momentum transfer and the total path length inside the medium.
For a light source at location rs and a detector at rd, the normalized field autocorrelation function
is given as,

g1(rd, rs, τ) =
1
N

N∑︂
i=1

wi exp
[︃
−

1
3

Yik2
0⟨∆r2(τ)⟩

]︃
, (9)

where for each photon packet i, wi = exp[−µaLi]/
∑︁N

i=1 exp[−µaLi], Li is the total pathlength, and
Yi is the dimensionless total momentum transfer of photon i due to scattering inside the medium.
In the baseline state, we ignore the presence of directed blood flow and assume that the flow can
be modeled as a Brownian motion, i.e., ⟨∆r2(τ)⟩ = 6DBτ. For a small perturbation at a voxel
location rj in the form of directed flow introduced inside the tissue medium, and assuming the
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photon paths remain exactly the same, the change in speckle contrast at voxel location rd and
light source location rs is given by ∆K2(rd, rs), where,

∆K2(rd, rs) =
2β
T

∫ T

0

(︂
1 −
τ

T

)︂
[g′2

1 (rd, rs, τ) − g2
1(rd, rs, τ)]dτ,

=
2β
T

∫ T

0

(︂
1 −
τ

T

)︂
[g′

1(rd, rs, τ) − g1(rd, rs, τ)][g′
1(rd, rs, τ) + g1(rd, rs, τ)]dτ,

(10)
where g′1(r) denotes the new normalized field autocorrelation function at pixel location rd due to
perturbation at a voxel location rj in the medium. Assuming the change in perturbation is really
small, Eq. (9) can be used to simplify the expression in Eq. (10), given by,

∆K2(rd, rs, rj) = −
4βk2

0
3T

∫ T

0

(︂
1 −
τ

T

)︂
g1(rd, rs, τ)

∑︂
i

w′
i (τ)Yi(rj)δV2(rj)τ

2dτ, (11)

where Yi(rj) is the momentum transfer of ith photon in the voxel located at rj, w′
i (τ) =

wi exp[2k2
0DBτµ

′
sLi] is the modified weight for the ith photon packet, and DB is the baseline

blood flow. We can write a similar expression for the reduced speckle contrast corresponding to
perturbation in any voxel location in the medium, given as,

∆K2(rd, rs) = −
4βk2

0
3T

∑︂
rj

Wm(rd, rs, rj)δV2(rj), (12)

where,

Wm(rd, rs, rj) =

∫ T

0

(︂
1 −
τ

T

)︂
g1(rd, rs, τ)

∑︂
i

w′
i (τ)Yi(rj)τ

2dτ. (13)

For a particular source-detector configuration setup in MCX, the simulation output returns w′
i (τ)

for a particular value of temporal parameter τ. The process of obtaining w′
iYi is explained in

more detail in the next section. The sensitivity matrix is formed by generating Wm for different
source and detector locations rs and rd. There are two main factors to consider here. Firstly,
generating the sensitivity matrix requires computation of w′

i (τ)Yi for different correlation times
τ ∈ (0, T). If we uniformly sample Nt points in (0, T), then we need to run the simulation Nt times
for a particular configuration. Secondly, multiple configurations of sources and detectors are
needed to obtain dense measurements for high-resolution tomographic reconstruction. Since each
camera pixel acts as a separate detector, a single light source position corresponds to thousands
of individual measurements. Generating the sensitivity matrix values for each detector position
is practically infeasible.

4. Proposed method: SpeckleCam

In this work, we propose to solve the computational challenge in generating the sensitivity matrix
values using two key subparts-i) photon replay approach to building the sensitivity matrix for
different correlation time τ, and ii) a convolution-based forward model that helps us build an
efficient reconstruction problem based on the forward model.

4.1. Generating the sensitivity matrix via photon replay method

The sensitivity matrix generation involves computing the photon weights w′
i dropped at each

voxel location rj within the medium during propagation for each correlation time τ, as in (12) and
(13). The MCX simulation starts with launching many photons at the source location, and the
scattering events and the path trajectory are stored for all the photons reaching the detector. A key
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consideration is that with changing correlation time τ, the scattering coefficient of the medium
remains constant; hence the scattering events and the path trajectory is independent of τ. We
can then employ the photon replay approach [33], inspired by the "reseeded" perturbation-based
Monte Carlo method proposed in [34]. The photon-replay method has been used in building the
sensitivity for hyperspectral imaging for diffuse optical tomography applications [33]. The photon
replay approach starts with a baseline simulation where a large number of photons are launched
with initial seeds generated with a deterministic pseudorandom number generator. Some photons
are detected at the detector location, and the corresponding photon seeds, photon trajectory,
and photon weights w′

i are recorded. Subsequent simulations, known as the photon replays,
launch the photons initialized with saved photons seeds and weights w′

i , thereby guaranteeing
that the photons follow the same trajectory and are detected at the exact same position as the
baseline simulation. During re-propagation, the photon weights w′

i are used to compute weighted
momentum transfer w′

iYi at each voxel location rj, which is then summed up for all the detected
photons at rj. For different τ values, we recalculate the weights w′

i (τ) and repeat the photon
trajectory by "replaying" without the need to re-run the baseline simulation. Running the baseline
simulation is the main computational bottleneck, and the computation time is directly related
to the number of launched photons (typically in orders of 108). We save computation time
significantly by avoiding the need to run the baseline simulation repeatedly for different τ values.
Specifically, if we use Nt = 20 values for τ ∈ (0, T), we achieve a speedup of 20× using the replay
method.

4.2. Convolution approximation

Next, we need to generate the sensitivity Wm for different source-detector configurations.
Computing the sensitivity for many detectors will take thousands of hours and is practically
infeasible using the traditional Monte Carlo approach. To solve the infeasibility problem, we
generate the sensitivity matrix by keeping the detector fixed at the center of the scattering medium
surface and changing only the line source’s position. In our system, we use a horizontal slit line
source instead of a point source and scan the line source vertically across the surface of a sample.
We use our system geometry to set up the Monte Carlo simulation configuration in MCX.

For our setup, we show examples of the generated sensitivity matrix by changing the location of
the line source and the pixel detector, shown in Fig. 3. The sensitivity matrix has a banana-shaped
path that is similar to the one obtained for Diffuse Optical Tomography (DOT), except that the
matrix in DOT is derived for absorptive contrast. In contrast, in speckle contrast tomography, the
matrix is obtained for contrast in the flow of scattering particles. The sensitivity matrix values
directly depend on the source and detector locations. Let us denote the vertical distance between
the midpoint of the line source and the detector as the source-detector distance. From instances
of the generated sensitivity matrix, we observe that as the distance between the source and the
detector increases, the deeper voxels in the sensitivity matrix have higher values. Therefore
the speckle contrast change is more sensitive to changes in flow from deeper layers. Also, the
sensitivity values decrease rapidly as we consider voxels very far away from the source or detector
for a particular configuration. Secondly, we note an essential property of the sensitivity for a
fixed exposure time. From Fig. 3, we observe that the sensitive matrix is spatially invariant.
Assuming the line source length is long enough, the sensitivity matrix has the same blur profile.
Moreover, the blur profile depends only on the distance between the detector and the midpoint of
the line source, and we denote this distance as ysd = ys − yd, where ys and yd are the y-coordinate
of the source and the detector location respectively, as shown in Fig. 3. Hence, we can define Wm
as a function of relative voxel location in a particular source-detector configuration than absolute
voxel locations. Specifically, we replace Wm(rd, rs, rj) with a kernel κm(rj − rd, rs − rd). Inspired
by the similarity in the DOT-based sensitivity matrix [35], the spatial invariance property of
the kernel can then be used to replace the matrix multiplication expression in Eq. (13) with a



Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5324

convolutional form, given as,

∆K2(rd, ysd) = −
4β
T
κm(ysd, rd)⊛ δV2(rd), (14)

where δV2(rd) is the 3D blood flow values that we want to recover, rs − rd = ysd, and the operator
⊛ denotes the depth-wise convolution.

Fig. 3. We show examples of the generated sensitivity matrix at different source-detector
locations. (a) The sensitivity matrix is dependent on source-detector separation distance
SD. The sensitivity for deeper layers increases with a larger source-detector distance. (b)
The sensitivity matrix is shift invariant; the blur profile only depends on the source-detector
distance SD and is independent of the absolute detector location. We use this property to
formulate our convolution-based forward model.

In our setup, a camera records images for different line source positions rs. The speckle
contrast images are obtained for each image resulting in a 3D set of images K2(rd, rs), where
rd ⇒ (x, y) denotes the speckle contrast at pixel location (x, y) for a line source located at rs. We
transform the 3D set of images K2(rd, rs) to K2(rd, ysd), such that each speckle contrast value at
location rd in an image now corresponds to a constant source-detector separation distance ysd.

Using a convolutional forward model, we mainly bypass the computational complexity
associated with the matrix inversion step.

4.3. Reconstruction algorithm

Given a set of images K2(rd, ysd), we want to recover the 3D blood flow maps. We first subtract
the baseline flow K2

0 (rd, ysd) from the speckle contrast measurements to obtain ∆K2(rd, ysd).
Using our forward model, we estimate the blood flow map using the following optimization
problem,

min
Q

.
ysdmax∑︂

ysd=ysdmin

| |∆K2(ysd) − κm(ysd) ∗ Q)| |2F + λ | |Q| |1, (15)

where | |.| |F denotes the Frobenius norm, | |.| |1 denotes the l1 norm and Q represents the change in
blood flow δV2 in three dimension, ∆DB(rd). We assume that the change in blood flow is spatially
sparse; hence we add a sparsity-based regularizer on Q to constrain the solution. For very small
ysd, the pixels are located very close to the line source and might be saturated. Moreover, the
diffusion approximation breaks down for very small source-detector distances. On the other
hand, pixels located far from the source receive very few backscattered photons and are mostly
dominated by the camera sensor noise. Hence we chose an optimal range of ysd from ysdmin = 2.5
mm to ysdmax = 14 mm for the optimization problem in Eq. (15).

With the reconstruction algorithm in Eq. (15), we achieve better performance than the state-of-
the-art reconstruction methods. Firstly, the formulated reconstruction algorithm is more memory
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efficient than the traditional matrix inversion-based algorithms. Secondly, the generated sensitivity
kernel κm is more accurate (as shown in subsection 6.1.2 ) than a diffusion approximation-based
matrix. One might argue that Monte-Carlo simulations are slower and computationally intensive
than the diffusion approximations-based model. However, generating the matrix is a one-time
computation for a known range of human tissue parameters, and can be computed beforehand.

5. Hardware

This section discusses our experimental setup and data collection methods for tissue-mimicking
phantom and in vivo experiments on human subjects.

Our experimental setup is shown in Fig. 4. We use a continuous wave line laser (model: STR
785 100 HR-L01-5-S), with a maximum power of 100 mW and 785nm wavelength with a fan
angle of 5 degrees to project a line instead of a point source. We then place a pair of galvo
mirrors (ThorLabs GVS012) to direct the laser beam onto the surface of the scattering medium.
The line beam was focused to a line (length<5 cm, width <1mm) at a distance of 50 cm from the
laser diode. The laser was operated at a power of 70 mW, which is well below the safety limit for
human tissue. For a detector, we use a CMOS camera (Oryx, model: ORX-10GS-51S5M-C:
5.0 MP, 162 FPS, Sony IMX250) in reflection mode to record images in reflection geometry.
We use the cross-polarization technique to reject direct surface reflection from the surface of
the medium. A polarizing filter is used infront of the camera lens and is oriented perpendicular
to the polarizing direction of the laser source. For all experiments, we set the camera aperture
diameter at f # = 4 so that the speckle size roughly matches the pixel size of the camera sensor.
The camera’s field of view is 3 cm × 3 cm, and we operate the camera at 400 frames per second.

Fig. 4. The schematic of our hardware setup for data collection and data transformation for
obtaining constant source-detector separation images. (a) We use a pair of galvo mirrors to
scan a line source on the surface of the scattering medium. The target is a structured hollow
pipe at z = 6 mm from the surface, and a pump maintains a constant flow of scattering
particles through the pipe. (b) Each image corresponds to a location of the light source. The
images are then transformed to form a constant source-detector distance ysd images, which
are used for fitting our convolution-based forward model.

The galvo-mirror is synchronized with the camera such that the camera acquires frames for
each position of the light source as determined by the galvo mirror. We use a camera exposure
time of 0.5 ms to make our setup more sensitive to faster flow speed inside the medium. We scan
the sample in one direction along Ns = 30 horizontal light source positions arranged uniformly
on the sample’s surface. The total scanning time is 15 seconds.

We capture images at a spatial resolution of 800 × 800. The speckle contrast is calculated
based on a spatial filter with 11 × 11 pixel neighborhood for each image. We then average the
speckle contrast across 100 images to reduce the effects of noise, resulting in a single speckle
image for each line source position. We perform a shot-noise correction on the speckle contrast,
similar to the method described in [25]. The speckle images are further downsampled by a factor
of 8, resulting in a 3D stack of speckle contrast images K2 ∈ R100×100×Ns , where Ns corresponds
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to the total number of source locations (Ns = 30). We then perform a grid-based transformation
K2(x, y, ys) ⇒ K2(x, y, ys − y), shown in Fig. 4 such that each speckle contrast value in an image
K2(x, y, ysd) now corresponds to a constant source-detector pair distance ysd.

6. Experiments and results

This section shows our results on recovering deep-flow images at a high resolution. Using our
approach, the estimated blood volume map is a 3-dimensional voxel grid of 100× 100× 33 voxels
corresponding to a volume of 30 × 30 × 10 mm3. We implement a prior method [25] which
involves a matrix inversion-based reconstruction algorithm for comparison. For the prior method,
we estimated the blood flow map corresponding to the same volume but divided into 32 × 32 × 8
voxel grid to keep the memory requirements comparable for both methods. We perform extensive
experiments using dynamic tissue phantoms and human subjects to validate our system.

6.1. Tissue phantom experiments

A tissue phantom enables us to test our system under different controllable parameters. We
discuss how we build complex tissue phantoms mimicking human tissue and blood vessels, and
then describe the performance of our system SpeckleCam.

6.1.1. Building a dynamic tissue phantom

We build dynamic tissue phantoms to mimic human tissue and major blood vessels deep inside
the tissue. Our goal is to test the resolution of the system in reconstructing deep flow maps. As
the homogeneous scattering medium, we use milk solution with 1% fat content in a cube (5 cm×

5 cm× 5 cm). The scattering and absorption coefficient was estimated to be µs = 6.5 mm−1

and µa = 0.0015 mm−1 using time domain spectrometry as described in [36]. The scattering
coefficient is in agreement with the actual scattering property of the human tissue. Using the
estimated optical properties, we fit speckle contrast profiles at different distances from the light
source, and the diffusion coefficient was estimated to be DB = 1.5×10−6 mm2/s. For perturbation,
we 3D printed hollow pipes with an inner diameter of 1 mm and different shapes with clear
transparent walls. We place the tubes at 6 mm from the surface of the scattering medium,
corresponding to ≈ 40 mean free paths (MFPs). We then use the same milk solution [37] to
pass through the tube using a syringe pump (New Era 4041) at various flow speeds, although an
intralipid solution [38] can be also used to mimic blood in tissue phantoms.

6.1.2. Phantom results

Diffusion-based vs. Monte Carlo-based model. In order to evaluate the quality of depth
reconstruction, we design the target to have features at variable depths. Specifically, we use two
targets, the first one is an ’S’ shape kept slanted along the depth, and the second target consists of
’U’ and ’S’ shapes located at 3 and 5 mm, respectively. We pump fluid through the hollow pipes
at a speed of 1 cm/s. The flow speed is chosen in accordance with the actual blood flow in major
blood vessels like the veins and the arteries. We demonstrate the results of depth reconstruction
using the Monte Carlo-based forward model and compare it with the traditional diffusion-based
model, as shown in Fig. 5. This is because the diffusion-based method has very poor accuracy in
the shallower layers. The superficial features dominate the deeper features in the reconstructed
process; hence results in a poor reconstruction quality of the deeper features. On the other
hand, the Monte Carlo-based matrix performs better at recovering the deep features, and the
reconstruction is closer to the ground truth. Additionally, we show slices from the reconstructed
volume from the Monte Carlo-based approach. The slices from the reconstructed volume at
variable depths reveal depth-sensitive features.

Resolution experiments. We show examples of reconstruction on complicated structures 6
mm deep from the surface of the medium in Fig. (6). We show the difference in speckle contrast
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Fig. 5. Examples of depth reconstruction using our (Monte Carlo-based) approach vs.
traditional diffusion-based forward model. The targets are designed to have two different
structures at variable depths inside the medium. The top row corresponds to a structure that
consists of two features, ’U’ and ’S’ shapes, at two distinct depths. The bottom row has the
’S’ shape structure kept slanted along the depth. The colormap in the left half of the image
provides the depth scale. The depth map from the diffusion-based sensitivity matrix cannot
recover the full structure from the medium, compared to the Monte Carlo-based sensitivity
matrix. The slices from the reconstructed volume from two different depths demonstrate
that our approach can recover the features successfully.

images from the baseline flow, ∆K2(rd, ysd) for a source-detector separation ysd = 3 mm. The
camera measurements record the spatial change in flow; however, the images are blurred due to
light scattering, and the original target cannot be discerned in the measurements alone. We use
our approach to reconstruct the blood flow volume, and we show a slice at a depth of 6 mm in the
reconstructed volume. SpeckleCam can recover the structure in high resolution compared to
the prior work. To test the spatial resolution achieved with our setup, we use a target consisting
of two pipes with 1 mm diameter and 2 mm separation between the pipe boundaries. From
the reconstructed slice, we see that SpeckleCam can clearly resolve the two lines. Overall,
SpeckleCam improves the spatial resolution by 3× at a depth of 6 mm over the low-resolution
prior work.

Sensitivity experiment. We also test the sensitivity of our system by varying the flow speeds in
the dynamic tissue phantom. The reconstructed slice using a sensitivity matrix derived from both
diffusion approximation and Monte Carlo simulation is shown in Fig. 7 for various flow speeds.
With decreasing flow speed, the difference in contrast signal in the speckle contrast image gets
weaker, and the camera measurements are mostly dominated by noise. As a result, the quality
of the reconstruction result is expected to decrease for lower flow speeds. We observe that the
reconstruction quality is slightly better for Monte Carlo-based sensitivity matrix over diffusion
approximation (not shown here), with the reconstruction parameters remaining the same in both
methods. Our system is capable of detecting structures with flow speeds as low as 5 mm/s.

6.2. In vivo experiments

We also perform human experiments to validate how well SpeckleCam translates to real data.
We describe our experimental protocols and results next.

6.2.1. Methodology

We validate our system’s sensitivity to human subjects’ blood flow changes. A manual pressure
cuff is generally used for occluding the arm to induce variations in blood flow [11,39]. We
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Fig. 6. Examples of results on simulated data. All the targets are kept at a depth of 6 mm
from the surface of the scattering medium. We show a slice from the reconstructed blood
flow map using our approach. We show we can recover flow in high resolution compared to
matrix-inversion-based reconstruction methods. The structure of the pipe, which serves as
the ground truth, is shown in the rightmost column.

Fig. 7. Examples of flow reconstruction with various flow speeds. The reconstruction
quality degrades as we decrease the flow speed, but our approach can recover structures with
flow speeds as low as 5 mm/s.
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recruit 5 subjects for the study, where we image the arm and wrist regions while occluding
the upper arm region at different occlusion pressure. The experimental protocol was approved
by the Rice University Institutional Review Board (Study number: IRB-FY2023-59, Approval
Date: 19/01/2014). The blood flow is inversely proportional to the occlusion pressure, and we
test our system to image blood flow in veins at different occlusion pressure. For each region,
we apply occlusion pressure for 30 seconds and collect images 10 seconds after the start of
occlusion, followed by 30 seconds of no occlusion where no data is being recorded. After the
no occlusion period, we raise the occlusion pressure and collect images. We follow the same
protocol and collect data corresponding to 0, 30, 60, 90 and 140 mm Hg. The images correspond
to 3 occlusion stages of 0, 30 and 60 mm Hg. For optical properties of the human arm, we use
scattering coefficient µs = 5.68 mm−1 and absorption coefficient µa = 0.011 mm−1 as estimated
in [40]. Blood in arteries and veins flows at a high speed, in the order of centimeters per second,
as opposed to capillaries where the blood flow speed is in millimeters per second. Since we are
interested in recovering flow speed in deeper blood vessels like arteries and veins, we image
regions with a low camera exposure time of 0.75 milliseconds.

6.2.2. In vivo results

Model fitting. With occlusion pressure, the blood flow in the tissue gets affected. The mean particle
displacement, hence the diffusion coefficient DB, should decrease with increasing occlusion
pressure. To validate this, we estimate DB by using the model in Eq. (3) for various occlusion
pressures. The measured data consists of a 3D stack of speckle contrast image measurements
for each occlusion pressure. The speckle contrast at a pixel reduces with increasing distance
from the source for known tissue optical properties. We choose a small region of the tissue
devoid of major blood vessels. In the small region, the contrast fall-off profile with increasing
source-detector distance is then used for fitting the model with respect to DB. We choose the
source-detector distance in the range of 5 mm and 15 mm for fitting the model. Pixels located
less than 5 mm from the source line are mostly saturated. On the other hand, pixels located
further than 15 mm are corrupted with noise since the pixels receive very few photons. Therefore
we use a suitable range between 5 mm and 15 mm for estimating the particle diffusion coefficient
DB. Speckle contrast computed at a detector decreases with increasing source-detector distance
and increasing blood flow speed for a fixed camera exposure time, as shown in Fig. 8. We
plot the variation of normalized speckle contrast for a range of source-detector distances. We
observe that the normalized speckle contrast curve decays faster at lower occlusion pressure.
Low occlusion pressure allows higher blood flow in the tissue, and hence the speckle contrast
decreases more rapidly. At higher occlusion pressure, there is limited blood flow, and hence the
normalized speckle contrast decays slowly with increasing source-detector distance. We show
that the model-predicted speckle contrast values match the experimental values. The estimated
DB are 3.9×10−7mm2/s for 0 mm Hg, 2.64×10−7mm2/s for 30 mm Hg and 0.68×10−7mm2/s for
60 mm Hg. The overall DB decreases with increasing pressure and is expected since increasing
occlusion pressure reduces tissue blood flow.

Imaging. The inverse model requires baseline contrast images for reconstruction. The baseline
contrast images can be generated apriori for a known set of tissue parameters. In this work, we
consider the images at 140 mm Hg to be the baseline when there is no blood flow in the tissue. We
then subtract the baseline contrast images from the contrast images at other occlusion pressures,
thereby obtaining ∆K2 for occlusion pressures at 0, 30, 60, and 90 mm Hg. We use each set
of ∆K2 as measurement input to our SpeckleCam reconstruction approach. We show some of
the difference contrast images ∆K2 and the reconstruction result using our proposed approach,
SpeckleCam, in Fig. 9. We note two key observations. Firstly, the slice at a depth of 2 mm
from the reconstructed volume has an improved spatial resolution over the contrast images. The
improved resolution is evident from the zoomed insets and the corresponding line profiles, which
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Fig. 8. The speckle contrast decays with increasing source-detector separation. With the
optical properties of the medium assumed to be constant, the decay depends on the mean
particle displacement. We show the speckle contrast image (top row) and noise-corrected
normalized speckle contrast (in the black square) for different occlusion pressure. With
increasing occlusion pressure, the speckle contrast decays slowly due to decreasing speed
of the blood cells inside the tissue. The estimated diffusion coefficients DB are 3.9 × 10−7

mm2/s for 0 mm Hg, 2.64 × 10−7 mm2/s for 30 mm Hg and 0.68 × 10−7 mm2/s for 60 mm
Hg.

show relatively sharper structures of the blood vessels in the reconstructed slices. Secondly, we
observe that the blood flow in different vessels decreases at a different rate with the increasing
occlusion pressure. The difference in blood flow may be due to the underlying physiology and
can be explored further to provide useful clinical diagnoses. We also show some more examples
of speckle contrast images, intensity images, and the reconstruction result using SpeckleCam
in Fig. 10. The intensity images and the speckle contrast images correspond to a source-pixel
distance ysd = 6 mm. The intensity images are shown only for visualization purposes and are
not used in the reconstruction pipeline. The intensity change in pixel on a major blood vessel
due to occlusion pressure is negligible. The pixel intensity depends mainly on the concentration
of the absorbing element. During occlusion, there is only a slight change in blood volume in
the vessel; hence the pixel intensity change is not noticeable. However, increasing the occlusion
pressure reduces the blood flow; hence the speckle contrast changes due to occlusion pressure.
Although the difference in contrast images from the baseline reflects the change in contrast due
to occlusion, the size or diameter of the blood vessel is not prominent, as light scattering results
in low spatial resolution of the captured images. Using our reconstruction pipeline, we use the
speckle contrast images to recover deep blood flow in high resolution. In the reconstructed blood
flow map, the flow in the major vessel decreases with increasing occlusion pressure for all the
examples shown. For occlusion pressure of 60 mm Hg, the blood flow signal is weak, and hence
the reconstruction fails to recover any discernable structure of the blood vessel. Finally, 90 mm
occlusion pressure totally occludes the blood flow in the imaged veins. In our vivo experiments,
we do not have the ground truth of the blood vessels. The absence of any ground truth makes
it difficult for us to compare and analyze the depth variation of the reconstructed blood vessel,
which might be important in certain applications [41]. Therefore, we mainly highlight the blood
flow changes at depth slices where the estimated flow is dominant in the reconstruction volume.
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Fig. 9. Examples of results from in vivo experiments under different occlusion pressure.
The difference in contrast images from baseline (top row) and reconstructed slice (second
row) using SpeckleCam are shown. The reconstructed slice has improved spatial resolution
over the simple speckle contrast images, as evident from the zoomed insets. We also capture
different rates of decreasing blood flow in two different blood vessels (shown in magenta
and cyan squares) with increasing occlusion pressure.
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Fig. 10. Examples of reconstruction results from in vivo experiments under different
occlusion pressure. We image two regions on the arm. The intensity images (top row), the
difference speckle contrast images from the baseline (second row), and the reconstruction
slice (third row) are shown. The intensity images do not change significantly on applying
occlusion pressure since there is only a slight change in the blood volume. The speckle
contrast image is sensitive to blood flow, for 60 mm Hg occlusion pressure, there is no
flow contrast in the region of the big blood vessel. However, light scattering results in the
blurring of speckle contrast images. SpeckleCam recovers the blood flow map in high spatial
resolution.
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7. Discussion and conclusion

We have presented SpeckleCam for deep tissue blood flow imaging in high resolution. In this
section, we discuss several aspects of our proposed technology and some future directions which
may improve the performance of our current approach.

Computational runtime. For the traditional method, the reconstruction time is 30 seconds for
reconstructing a flow volume consisting of 32 x 32 x 8 voxels, and more than 8 minutes for 48 x
48 x 12 voxels. The computation time and memory allocation scale up exponentially with the
increasing dimensions of the sensitivity matrix. For SpeckleCam, the reconstruction time is less
than 2 minutes for 500 iterations for reconstructing the blood flow volume consisting of 100 x
100 x 32 voxels, and less than 5 minutes for 200 x 200 x 64 voxels.

Speckle size. It has been reported in [42] there is a slight intensity function distortion when the
speckle size is less than 2 times the pixel size, with around 20% reduction in speckle contrast
when the speckle size matches the pixel size. However, there is a tradeoff to be considered when
choosing the speckle size for imaging. There are two main ways to increase speckle size, by
using longer wavelength and by using higher f #. Using longer wavelengths increases penetration
depth, but the camera sensitivity decreases for longer wavelengths. Secondly, increasing f #
reduces the aperture diameter of the camera lens, thereby reducing the light captured at each
pixel. Reduced camera sensitivity and low image brightness increase dark noise in the acquired
images, specifically at larger source-detector distances for fixed laser power. Therefore increasing
the speckle size comes at the expense of increased noise in measurements. Hence, we match the
speckle size to pixel size according to [25] to obtain an optimal set of measurements.

Sparsity regularizer. An optical tomography reconstruction is an ill-posed problem. Hence
regularizers are commonly used to constrain the solution space. Generally, a sparsity regularizer
is used when the target is known to be sparse in the reconstruction volume. In this work, the
regularizer weight is chosen manually based on the quality of the reconstruction. The comparison
of SpeckleCam with the prior method for a single phantom is shown in Fig. 11. The sparsity
regularizer helps in resolving spatially close structures in the reconstructed flow image. While
the reconstruction results using the traditional method improve with sparsity regularizer, however,
the quality is much inferior to SpeckleCam in the ability to resolve finer structures.

Fig. 11. We show the impact of sparsity-based regularizer on the reconstruction results for
both SpeckleCam and traditional methods. Sparsity regularizer in SpeckleCam helps in
resolving finer structures better than the traditional methods.

Validity of the small flow perturbation assumption from the baseline. In this work, we assume
that the change in flow perturbation is small compared to the baseline for developing the forward
model. However, in cases where there is a large change in blood flow, this assumption might not
be valid. There are two main factors for consideration here. First, the background signal arises
from the smaller blood vessels with blood speed <1cm/sec. The sensitivity of a speckle contrast
imaging system can be controlled by the camera exposure duration. Therefore, to suppress the
background signals, we have used a very low camera exposure duration of 0.75 ms. The exposure
duration is chosen such that our system is mostly sensitive to larger blood vessels with higher
blood flow speeds. Therefore, the change in background signal is relatively less when compared
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to the baseline. Secondly, reconstructed blood flow follows a linear response with changes in
actual blood flow speed at lower speed differences. However, a large change in the flow speed
introduces a non-linear response in the reconstructed blood flow as shown in [25]. The sensitivity
of the system decreases at larger flow speeds. This is a known problem in optical tomographic
reconstructions. A solution can be to compute a response curve of estimated blood flow vs.
actual blood flow via experiments. This response curve can be used to deduce the actual blood
flow when deployed in real applications. Furthermore, capturing measurements with multiple
exposure times can further improve flow speed estimation.

Ordered motion vs. shear-induced diffusive motion. Blood flow can be quantified well with a
hybrid model describing both Brownian motion (from diffusive flow arising from shear stress)
and advective motion (directed flow) [43]. The speckle contrast depends on a combination of both
types of motion. The problem of separating the contributions from both the above-mentioned
factors is well-studied and characterized [44,45]. In [46,47], the authors have reported the
contribution from shear-induced diffusion decreases with increasing vessel diameter and flow
speeds, and the contribution from ordered flow significantly dominates at the baseline conditions
(for no occlusion) that we consider in this work. However, at higher occlusion pressure, the
shear-induced diffusion increases and might introduce error in the estimated blood flow speed.
To account for the modeling error, both diffusive and ordered motion should be considered in the
forward model and this will guide our future efforts to improve the accuracy of SpeckleCam.

Generating the sensitivity kernel. The generation of kernel κm in (14) relies on the perturbation
approach based on Monte Carlo simulations, and is prone to noise. To reduce the effects of
stochastic noise, a sufficient number of photons need to be used in the simulation, or multiple
simulation runs need to be averaged, both of which increase the computational complexity to
some extent. Instead, several post-processing filtering techniques [33] help in improving the
accuracy of the generated kernel. Generating the sensitivity matrix involves only a one-time
computation for a known range of human tissue properties, and hence can be computed apriori.
Secondly, we observe that the quality of the depth reconstruction deteriorates with increasing
spatial overlap in the features located at variable depths. The contrast signal from the shallower
features dominates the deeper features, and it becomes increasingly difficult to separate features
with considerable x − y plane overlap between them. One primary reason is that the sensitivity
values decrease exponentially with increased depth from the scattering medium surface. To tackle
this issue of reduced sensitivity at deeper levels, a depth-compensated weighted sensitivity matrix
[48,49] has been shown to be useful in optical tomography applications and can be adapted to
our pipeline as well.

Data acquisition time. In this work, we assume the flow to be stationary during the scan time.
However, various clinical applications involve imaging dynamic blood flow changes, and the
imaging setup has to be suited to the time scale of the blood flow fluctuations. For example,
a real-time blood flow imaging setup ( 10-100 fps) might be necessary for applications like
perfusion monitoring during cerebrovascular surgery [50,51], and flow pulsatility imaging for
vascular health monitoring [52,53]. Secondly, in applications like burnt wound monitoring, and
anesthetic onset measurement [54], blood flow changes occur in minute scale and this allows
the use of a relatively slower( 0.1-1 fps) imaging setup. Thirdly, in applications like wound
healing monitoring, deep tissue flow estimation for diagnosing peripheral arterial diseases, and
dermatological applications, the blood flow can be considered to be stationary. The current
SpeckleCam system with a scanning time of around 15 seconds, can be used in the third category
of clinical applications. Hardware improvements like using a faster camera with sensitive sensors
(EMCCD) will further reduce the scanning time with the same performance. For example,
using a 1000 FPS camera will further reduce the scanning time by 3 times, thereby allowing
SpeckleCam to be useful in some of the applications like wound monitoring and assessment.
For faster flow changes, for example, while imaging blood flow pulsatility, the flow estimated by



Research Article Vol. 14, No. 10 / 1 Oct 2023 / Biomedical Optics Express 5335

SpeckleCam is an average flow during the scanning interval. The acquisition time in SpeckleCam
and many similar scanning-based systems [15,25], is, therefore, a bottleneck towards application
in real-time in vivo imaging.

In conclusion, we have developed and demonstrated a deep blood flow imaging setup. We show
that our system can recover structures as deep as 6 mm, with higher resolution than traditional
approaches. With the help of in vivo experiments, we validate that our system is sensitive to
actual changes in blood flow induced by arm occlusion. We hope that our work will find its
utility in monitoring blood perfusion for peripheral vascular diseases as well as wound-healing
applications.
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